Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(8): 3441-3457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335784

RESUMO

We present ManuKnowVis, the result of a design study, in which we contextualize data from multiple knowledge repositories of a manufacturing process for battery modules used in electric vehicles. In data-driven analyses of manufacturing data, we observed a discrepancy between two stakeholder groups involved in serial manufacturing processes: Knowledge providers (e.g., engineers) have domain knowledge about the manufacturing process but have difficulties in implementing data-driven analyses. Knowledge consumers (e.g., data scientists) have no first-hand domain knowledge but are highly skilled in performing data-driven analyses. ManuKnowVis bridges the gap between providers and consumers and enables the creation and completion of manufacturing knowledge. We contribute a multi-stakeholder design study, where we developed ManuKnowVis in three main iterations with consumers and providers from an automotive company. The iterative development led us to a multiple linked view tool, in which, on the one hand, providers can describe and connect individual entities (e.g., stations or produced parts) of the manufacturing process based on their domain knowledge. On the other hand, consumers can leverage this enhanced data to better understand complex domain problems, thus, performing data analyses more efficiently. As such, our approach directly impacts the success of data-driven analyses from manufacturing data. To demonstrate the usefulness of our approach, we carried out a case study with seven domain experts, which demonstrates how providers can externalize their knowledge and consumers can implement data-driven analyses more efficiently.

2.
IEEE Comput Graph Appl ; 42(2): 68-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230948

RESUMO

Electrical engines are a key technology all automotive manufacturers must master to stay competitive. Engineers need to analyze an overwhelming number of engine measurements to improve the manufacturing for this technology. They are hindered in the task of analyzing large numbers of engines, however, by the following challenges: 1) Engines comprise a complex hierarchical structure of subcomponents. 2) Locating the cause of errors along manufacturing processes is a difficult procedure. 3) Large numbers of heterogeneous measurements impair the ability to explain errors in engines. We address these challenges in a design study with automotive engineers and by developing the visual analytics system Manufacturing Explorer (ManEx), which provides interactive interfaces to analyze measurements of engines across the manufacturing process. ManEx was validated by five experts. Our results suggest high usability and usefulness scores and the improvement of a real-world manufacturing process. Specifically, with ManEx, experts reduced scraped parts by over 3%.

3.
IEEE Trans Vis Comput Graph ; 28(1): 11-21, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587040

RESUMO

In this design study, we present IRVINE, a Visual Analytics (VA) system, which facilitates the analysis of acoustic data to detect and understand previously unknown errors in the manufacturing of electrical engines. In serial manufacturing processes, signatures from acoustic data provide valuable information on how the relationship between multiple produced engines serves to detect and understand previously unknown errors. To analyze such signatures, IRVINE leverages interactive clustering and data labeling techniques, allowing users to analyze clusters of engines with similar signatures, drill down to groups of engines, and select an engine of interest. Furthermore, IRVINE allows to assign labels to engines and clusters and annotate the cause of an error in the acoustic raw measurement of an engine. Since labels and annotations represent valuable knowledge, they are conserved in a knowledge database to be available for other stakeholders. We contribute a design study, where we developed IRVINE in four main iterations with engineers from a company in the automotive sector. To validate IRVINE, we conducted a field study with six domain experts. Our results suggest a high usability and usefulness of IRVINE as part of the improvement of a real-world manufacturing process. Specifically, with IRVINE domain experts were able to label and annotate produced electrical engines more than 30% faster.

4.
IEEE Trans Vis Comput Graph ; 28(12): 4918-4929, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478370

RESUMO

Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has been little work to compare and categorize multiscale visualizations to understand their design practices. In this article, we present a structured literature analysis to provide an overview of common design practices in multiscale visualization research. We systematically reviewed and categorized 122 published journal or conference articles between 1995 and 2020. We organized the reviewed articles in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore existing work to create new multiscale navigation and visualization techniques. Based on the reviewed articles, we examine research trends and highlight open research challenges.


Assuntos
Gráficos por Computador
5.
IEEE Trans Vis Comput Graph ; 27(2): 517-527, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048714

RESUMO

The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

6.
IEEE Trans Vis Comput Graph ; 26(1): 397-406, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31425037

RESUMO

Tennis players and coaches of all proficiency levels seek to understand and improve their play. Summary statistics alone are inadequate to provide the insights players need to improve their games. Spatio-temporal data capturing player and ball movements is likely to provide the actionable insights needed to identify player strengths, weaknesses, and strategies. To fully utilize this spatio-temporal data, we need to integrate it with domain-relevant context meta-data. In this paper, we propose CourtTime, a novel approach to perform data-driven visual analysis of individual tennis matches. Our visual approach introduces a novel visual metaphor, namely 1-D Space-Time Charts that enable the analysis of single points at a glance based on small multiples. We also employ user-driven sorting and clustering techniques and a layout technique that aligns the last few shots in a point to facilitate shot pattern discovery. We discuss the usefulness of CourtTime via an extensive case study and report on feedback from an amateur tennis player and three tennis coaches.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30136979

RESUMO

Understanding the movement patterns of collectives, such as flocks of birds or fish swarms, is an interesting open research question. The collectives are driven by mutual objectives or react to individual direction changes and external influence factors and stimuli. The challenge in visualizing collective movement data is to show space and time of hundreds of movements at the same time to enable the detection of spatiotemporal patterns. In this paper, we propose MotionRugs, a novel space efficient technique for visualizing moving groups of entities. Building upon established space-partitioning strategies, our approach reduces the spatial dimensions in each time step to a one-dimensional ordered representation of the individual entities. By design, MotionRugs provides an overlap-free, compact overview of the development of group movements over time and thus, enables analysts to visually identify and explore group-specific temporal patterns. We demonstrate the usefulness of our approach in the field of fish swarm analysis and report on initial feedback of domain experts from the field of collective behavior.

8.
IEEE Trans Vis Comput Graph ; 22(1): 141-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26529694

RESUMO

Multivariate time series data can be found in many application domains. Examples include data from computer networks, healthcare, social networks, or financial markets. Often, patterns in such data evolve over time among multiple dimensions and are hard to detect. Dimensionality reduction methods such as PCA and MDS allow analysis and visualization of multivariate data, but per se do not provide means to explore multivariate patterns over time. We propose Temporal Multidimensional Scaling (TMDS), a novel visualization technique that computes temporal one-dimensional MDS plots for multivariate data which evolve over time. Using a sliding window approach, MDS is computed for each data window separately, and the results are plotted sequentially along the time axis, taking care of plot alignment. Our TMDS plots enable visual identification of patterns based on multidimensional similarity of the data evolving over time. We demonstrate the usefulness of our approach in the field of network security and show in two case studies how users can iteratively explore the data to identify previously unknown, temporally evolving patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...